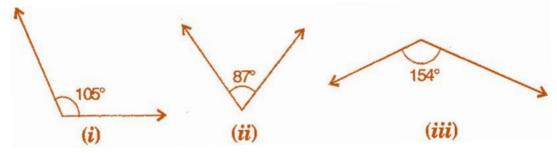

Mathematics

(Chapter – 5) (Lines and Angles)
(Class – VII)

Exercise 5.1

Question 1:

Find the complement of each of the following angles:


Answer 1:

Complementary angle = 90° – given angle

- (i) Complement of $20^{\circ} = 90^{\circ} 20^{\circ} = 70^{\circ}$
- (ii) Complement of $63^{\circ} = 90^{\circ} 63^{\circ} = 27^{\circ}$
- (iii) Complement of $57^{\circ} = 90^{\circ} 57^{\circ} = 33^{\circ}$

Question 2:

Find the supplement of each of the following angles:

Answer 2:

Supplementary angle = 180° – given angle

- (i) Supplement of $105^{\circ} = 180^{\circ} 105^{\circ} = 75^{\circ}$
- (ii) Supplement of $87^{\circ} = 180^{\circ} 87^{\circ} = 93^{\circ}$
- (iii) Supplement of $154^{\circ} = 180^{\circ} 154^{\circ} = 26^{\circ}$

Question 3:

Identify which of the following pairs of angles are complementary and which are supplementary:

(iv)
$$130^{\circ}, 50^{\circ}$$

(v)
$$45^{\circ}, 45^{\circ}$$

Answer 3:

If sum of two angles is 180° , then they are called supplementary angles.

If sum of two angles is 90° , then they are called complementary angles.

(i)
$$65^{\circ} + 115^{\circ} = 180^{\circ}$$

These are supplementary angles.

(ii)
$$63^{\circ} + 27^{\circ} = 90^{\circ}$$

These are complementary angles.

(iii)
$$112^{\circ} + 68^{\circ} = 180^{\circ}$$

These are supplementary angles.

(iv)
$$130^{\circ} + 50^{\circ} = 180^{\circ}$$

These are supplementary angles.

(v)
$$45^{\circ} + 45^{\circ} = 90^{\circ}$$

These are complementary angles.

(vi)
$$80^{\circ} + 10^{\circ} = 90^{\circ}$$

These are complementary angles.

Question 4:

Find the angle which is equal to its complement.

Answer 4:

Let one of the two equal complementary angles be x.

$$\therefore x + x = 90^{\circ}$$

$$\Rightarrow$$
 $2x = 90^{\circ}$

$$\Rightarrow x = \frac{90^{\circ}}{2} = 45^{\circ}$$

Thus, 45° is equal to its complement.

Question 5:

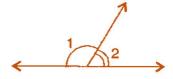
Find the angle which is equal to its supplement.

Answer 5:

Let *x* be two equal angles of its supplement.

Therefore, $x + x = 180^{\circ}$

$$\Rightarrow$$
 $2x = 180^{\circ}$


$$\Rightarrow \qquad x = \frac{180^{\circ}}{2} = 90^{\circ}$$

Thus, 90° is equal to its supplement.

[Supplementary angles]

Question 6:

In the given figure, $\angle 1$ and $\angle 2$ are supplementary angles. If $\angle 1$ is decreased, what changes should take place in $\angle 2$ so that both the angles still remain supplementary?

Answer 6:

If \angle 1 is decreased then, \angle 2 will increase with the same measure, so that both the angles still remain supplementary.

Question 7:

Can two angles be supplementary if both of them are:

- (i) acute
- (ii) obtuse
- (iii) right?

Answer 7:

- (i) No, because sum of two acute angles is less than 180°.
- (ii) No, because sum of two obtuse angles is more than 180°.
- (iii) Yes, because sum of two right angles is 180°.

Question 8:

An angle is greater than 45° . Is its complementary angle greater than 45° or equal to 45° or less than 45° ?

Enati Answer 8:

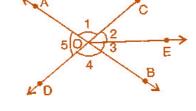
Let the complementary angles be x and y, i.e., $x + y = 90^{\circ}$

It is given that $x > 45^{\circ}$

Adding y both sides, $x + y > 45^{\circ} + y$

 \Rightarrow 90° > 45° + y

 \Rightarrow 90° - 45° > y

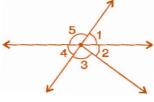

 \Rightarrow $y < 45^{\circ}$

Thus, its complementary angle is less than 45° .

Question 9:

In the adjoining figure:

- (i) Is $\angle 1$ adjacent to $\angle 2$?
- (ii) Is \angle AOC adjacent to \angle AOE?
- (iii) Do \angle COE and \angle EOD form a linear pair?
- (iv) Are \angle BOD and \angle DOA supplementary?
- (v) Is $\angle 1$ vertically opposite to $\angle 4$?
- (vi) What is the vertically opposite angle of \angle 5?


Answer 9:

- (i) Yes, in \angle AOE, OC is common arm.
- (ii) No, they have no non-common arms on opposite side of common arm.
- (iii) Yes, they form linear pair.
- (iv) Yes, they are supplementary.
- (v) Yes, they are vertically opposite angles.
- (vi) Vertically opposite angles of \angle 5 is \angle COB.

Question 10:

Indicate which pairs of angles are:

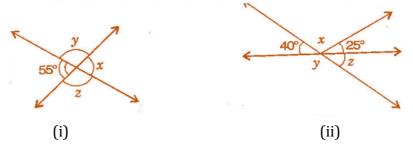
- (i) Vertically opposite angles?
- (ii) Linear pairs?

Answer 10:

- (i) Vertically opposite angles, $\angle 1$ and $\angle 4$; $\angle 5$ and $\angle 2 + \angle 3$.
- (ii) Linear pairs $\angle 1$ and $\angle 5$; $\angle 5$ and $\angle 4$.

Question 11:

In the following figure, is \angle 1 adjacent to \angle 2? Give reasons.



Answer 11:

 \angle 1 and \angle 2 are not adjacent angles because their vertex is not common.

Question 12:

Find the values of the angles x, y and z in each of the following:

Answer 12:

(i)
$$x = 55^{\circ}$$

Now $55^{\circ} + y = 180^{\circ}$
 $\Rightarrow y = 180^{\circ} - 55^{\circ} = 125^{\circ}$
Also $y = z = 125^{\circ}$
Thus, $x = 55^{\circ}$, $y = 125^{\circ}$ and $z = 125^{\circ}$.

[Vertically opposite angles]
[Linear pair]

[Vertically opposite angles]

(ii)
$$40^{\circ} + x + 25^{\circ} = 180^{\circ}$$

 $\Rightarrow 65^{\circ} + x = 180^{\circ}$
 $\Rightarrow x = 180^{\circ} - 65^{\circ} = 115^{\circ}$
Now $40^{\circ} + y = 180^{\circ}$
 $\Rightarrow y = 180^{\circ} - 40^{\circ} = 140^{\circ}$
Also $y + z = 180^{\circ}$
 $\Rightarrow 140^{\circ} + z = 180^{\circ}$
 $\Rightarrow z = 180^{\circ} - 140^{\circ} = 40^{\circ}$
Thus, $x = 115^{\circ}$, $y = 140^{\circ}$ and $z = 40^{\circ}$.

[Angles on straight line]

[Linear pair]
.....(i)
[Linear pair]
[From equation (i)]

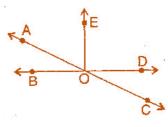
Question 13:

Fill in the blanks:

- (i) If two angles are complementary, then the sum of their measures is
- (ii) If two angles are supplementary, then the sum of their measures is
- (iii) Two angles forming a linear pair are ______.
- (iv) If two adjacent angles are supplementary, they form a _____.

- (v) If two lines intersect a point, then the vertically opposite angles are always
- (vi) If two lines intersect at a point and if one pair of vertically opposite angles are acute angles, then the other pair of vertically opposite angles are

Answer 13:


- (i) 90°
- (ii) 180°
- (iii) supplementary

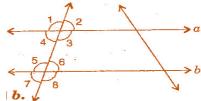
- (iv) linear pair
- (v) equal
- (vi) obtuse angles

Question 14:

In the adjoining figure, name the following pairs of angles:

- (i) Obtuse vertically opposite angles.
- (ii) Adjacent complementary angles.
- (iii) Equal supplementary angles.
- (iv) Unequal supplementary angles.
- (v) Adjacent angles that do not form a linear pair.

Answer 14:

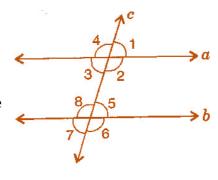

- (i) Obtuse vertically opposite angles means greater than 90° and equal \angle AOD = \angle BOC.
- (ii) Adjacent complementary angles means angles have common vertex, common arm, non-common arms are on either side of common arm and sum of angles is 90°.
- (iii) Equal supplementary angles means sum of angles is 180° and supplement angles are equal.
- (iv) Unequal supplementary angles means sum of angles is 180° and supplement angles are unequal.
 - i.e., \angle AOE, \angle EOC; \angle AOD, \angle DOC and \angle AOB, \angle BOC
- (v) Adjacent angles that do not form a linear pair mean, angles have common ray but the angles in a linear pair are not supplementary.
 - i.e., $\angle AOB$, $\angle AOE$; $\angle AOE$, $\angle EOD$ and $\angle EOD$, $\angle COD$

Exercise 5.2

Question 1:

State the property that is used in each of the following statements:

- (i) If a||b, then $\angle 1 = \angle 5$.
- (ii) If $\angle 4 = \angle 6$, then a||b.
- (iii) If $\angle 4 + \angle 5 + 180^{\circ}$, then a||b.

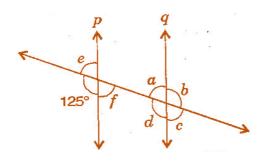

Answer 1:

- (i) Given, a||b, then $\angle 1 = \angle 5$ [Corresponding angles] If two parallel lines are cut by a transversal, each pair of corresponding angles are equal in measure.
- (ii) Given, $\angle 4 = \angle 6$, then a||b [Alternate interior angles] When a transversal cuts two lines such that pairs of alternate interior angles are equal, the lines have to be parallel.
- (iii) Given, $\angle 4 + \angle 5 = 180^\circ$, then a||b| [Co-interior Angles] When a transversal cuts two lines, such that pairs of interior angles on the same side of transversal are supplementary, the lines have to be parallel.

Question 2:

In the adjoining figure, identify:

- (i) the pairs of corresponding angles.
- (ii) the pairs of alternate interior angles.
- (iii) the pairs of interior angles on the same side of the transversal.
- (iv) the vertically opposite angles.



Answer 2:

- (i) The pairs of corresponding angles: $\angle 1$, $\angle 5$; $\angle 2$, $\angle 6$; $\angle 4$, $\angle 8$ and $\angle 3$, $\angle 7$
- (ii) The pairs of alternate interior angles are: $\angle 3$, $\angle 5$ and $\angle 2$, $\angle 8$
- (iii) The pair of interior angles on the same side of the transversal: $\angle 3$, $\angle 8$ and $\angle 2$, $\angle 5$
- (iv) The vertically opposite angles are: $\angle 1$, $\angle 3$; $\angle 2$, $\angle 4$; $\angle 6$, $\angle 8$ and $\angle 5$, $\angle 7$

Question 3:

In the adjoining figure, p||q. Find the unknown angles.

Answer 3:

Given, p||q and cut by a transversal line.

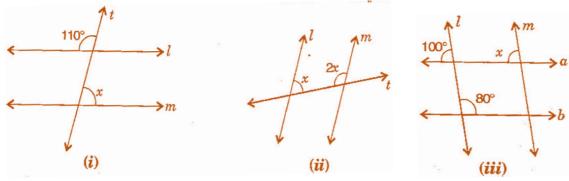
$$\therefore 125^{\circ} + e = 180^{\circ}$$
 [Linear pair]

$$e = 180^{\circ} - 125^{\circ} = 55^{\circ}$$
(i)

Now
$$e = f = 55^{\circ}$$
 [Vertically opposite angles]
Also $a = f = 55^{\circ}$ [Alternate interior angles]

$$a+b=180^{\circ}$$
 [Linear pair]

$$\Rightarrow$$
 55°+ $b=180^{\circ}$ [From equation (i)]


$$\Rightarrow$$
 $b=180^{\circ}-55^{\circ}=125^{\circ}$

Now
$$a = c = 55^{\circ}$$
 and $b = d = 125^{\circ}$ [Vertically opposite angles]

Thus,
$$a = 55^{\circ}, b = 125^{\circ}, c = 55^{\circ}, d = 125^{\circ}, e = 55^{\circ}$$
 and $f = 55^{\circ}$.

Question 4:

Find the values of x in each of the following figures if l||m|

Answer 4:

- (i) Given, l||m| and t is transversal line.
 - \therefore Interior vertically opposite angle between lines l and $t = 110^{\circ}$.

$$110^{\circ} + x = 180^{\circ}$$

[Supplementary angles]

$$\Rightarrow$$
 $x = 180^{\circ} - 110^{\circ} = 70^{\circ}$

(ii) Given, l||m| and t is transversal line.

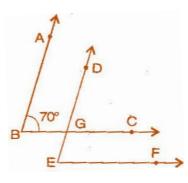
$$x+2x=180$$

[Interior opposite angles]

$$\Rightarrow$$
 3x = 180°

$$\Rightarrow x = \frac{180^{\circ}}{3} = 60^{\circ}$$

(iii) Given, l||m| and a||b|.


$$x = 100^{\circ}$$

[Corresponding angles]

Question 5:

In the given figure, the arms of two angles are parallel. If $\Delta ABC = 70^{\circ}$, then find:

(i)
$$\angle$$
 DGC

Answer 5:

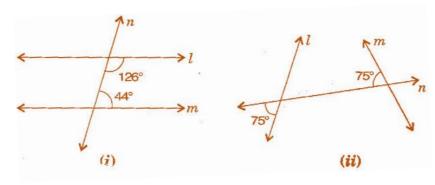
- (i) Given, AB \parallel DE and BC is a transversal line and \angle ABC = 70°
 - \therefore \angle ABC = \angle DGC

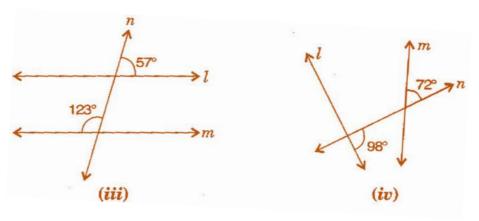
[Corresponding angles]

$$\therefore$$
 \(\triangle DGC = 70\circ\)

....(i)

- (ii) Given, BC \parallel EF and DE is a transversal line and \angle DGC = 70°
 - \therefore \angle DGC = \angle DEF


[Corresponding angles]


 \therefore \angle DEF = 70°

[From equation (i)]

Question 6:

In the given figures below, decide whether l is parallel to m.

Answer 6:

- (i) $126^{\circ} + 44^{\circ} = 170^{\circ}$ $l \parallel m$ because sum of interior opposite angles should be 180° .
- (ii) $75^{\circ} + 75^{\circ} = 150^{\circ}$ $l \parallel m$ because sum of angles does not obey the property of parallel lines.
- (iii) $57^{\circ}+123^{\circ}=180^{\circ}$ $l \parallel m$ due to supplementary angles property of parallel lines.
- (iv) $98^{\circ} + 72^{\circ} = 170^{\circ}$ l is not parallel to m because sum of angles does not obey the property of parallel lines.